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Advanced secondary batteries: operating 
temperatures and achieved performances



The lithium-ion battery: thermodynamics 
and kinetics of self-discharge
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The lithium-ion battery: thermodynamics

The chemistry of Li-ion batteries:

(-) graphite/organic liquid electrolyte/LiTMO (+)

(-) “Anode”:   6C + xLi+ + xe- = LixC6     E-

(+) “Cathode” LiTMO = xLi+ + xe- + Li1-xTMO    E+

(TMO= MO2, M= Co, Ni, Mn…) or spinel Mn2O4)

OCV (cell) (x, T)= E+(x, T) - E-(x,T)

∆∆∆∆G=∆∆∆∆H - Τ∆Τ∆Τ∆Τ∆S= -nFE



The lithium-ion battery: thermodynamics

∆∆∆∆G=∆∆∆∆H - Τ∆Τ∆Τ∆Τ∆S= -nFE
∆∆∆∆S=F(dE/dT)x
∆∆∆∆H=-FE+TF(dE/dT)x



Thermodynamics: anode
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Thermodynamics: anode
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Thermodynamics: Cathode
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principle of self-discharge
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Aging Effect (Cathodes)

Curve at Aging 75oC, 10days
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Principle of self-discharge (III)

Measurements
•The capacity loss:

Is measured as the difference between the discharge capacity 
before and after storage:

• Anode: Li-deintercalation (charge of a Li/LixC6 half-cell)
• Cathode: Li-intercalation (discharge of a Li/Li0.5+yCoO2 half-cell)

• OCV vs. time curve:
• Anode: OCV         : µLi(interface) 
• Cathode: OCV      : µLi(interface) 



Reversible & irreversible capacity 
losses

Full charge Storage (t, T) next cycles
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OCV recovery
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Objective of this work

–find the kinetics laws that govern:
• OCV = f(t,T)
• Capacity loss =f(t,T)

– mechanism of the total capacity loss
– origin of the irreversible capacity loss



-2016 coin cell-type were used:

Li / LiPF6 ,1M in EC(1):DMC(1) / Graphite (SG, USA)
Li / LiClO4,1M in PC / LiCoO2 (Enax. Japan)

- After 5 cycles @ C/5-rate at ambient temperature, the cells were   
stored at initial voltage:

0 V for the anode (lithiated state: LiC6)
4.2 V for the cathode (delithiated state Li0.5CoO2)

between   50 C < T < 75 C for periods up to 4 weeks

- OCV was monitored during aging at T
- The cells were then charged (anodes) or discharged 
(cathodes) and cycled for several cycles at ambient 
temperature



OCV measurements
– Anodes:
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OCV measurements (anodes)
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OCV measurements (anodes)
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Activation energy (anodes)

-2.8

-2.4

-2

-1.6

-1.2

2.75 2.8 2.85 2.9 2.95 3 3.05 3.1

ln k = 15.121 - 48795.7/RT
R= 0.9993 

ln
 k

1000/T

k=k
0
e-Ea/RT

Ea =48.8 kJ/Li-mole

SD rate x 2 every 10 C



Capacity loss (anodes)
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Kinetics of capacity loss (anodes)
t
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Kinetics of capacity loss (anodes)

Activation energy
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Mechanism of SD in graphite anodes (II
The (Li+, e-, molecule) adsorbed complex

More SEI forms



OCV measurements (Cathodes)
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OCV measurements (Cathodes)

Kinetics and activation energy
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Aging Effect (Cathodes)

Curve at Aging 75oC, 10days
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Total capacity loss (cathodes)
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Kinetics law of SD (cathodes)
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Kinetics law of SD (cathodes)

t=ax2 + bx + c
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Mechanism of capacity loss: Structure changes
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LCO before and after aging
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Surface spinel

H1-3 + spinel Dark field image



Heavily cycled LCO

Image and Diffraction pattern after cycling (334x) at RT. 
The SAD pattern shows extra spots corresponding to the structure of the cubic spinel.



The hexagonal to spinel phase transition
Irreversible capacity loss

Hexagonal Spinel

Abstract # 1119, poster session today



LIBs at Low Temperature

Abstract # 1119, poster session today

The performances at LT are still to be improved



The components issues: 1) carbon anode

Two exothermic 
reactions:
• 150C: the SEI reacts
with electrolyte
• >250 C: lithium de-
intercalates and reacts



The components issues: anode

Need for more stable LV ceramics Li-M-O anodes

Li-Ti-O :
• spinel phase Li4Ti5O12

• ramsdellite phase: Li2Ti3O7
Li-V-O or Li-W-O

• LiVO2 and LiWO2
Li-Fe-O such as Li6Fe2O3

However: this will be at the expense of energy densit



The components issues: 2) cathode



2) cathode: TMO (Co, Ni) +Al or Fe doping



1. The presence of (PO4)3- polyanion
2. The use of M3+/M2+ redox reaction

LiM2+PO4 M3+PO4 +  Li+ +  e-

Stable operation at high voltage

4.1V: Mn3+/Mn2+

3.4V: Fe3+/Fe2+

4.8V: Co3+/Co2+

Olivine-Type Cathodes for Lithium-ion Batteries
Li+M2+(PO4)3- (M=Transition Metals)



Orthorhombic / D2h
16 - Pmnb

LiFePO4
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The components issues: 3) electrolyte



The components issues: 3) electrolyte



More thermally stable electrolytes are needed

Hybrid electrolytes: 
gels: polymer + liquid
polymers in salts
LT molten salts
Glass-type electrolytes

• The LT conductivity may be a problem!
• Interfacial impedance should be optimized
• Adapted separators are needed with new safety
features (glass fibers, ceramics,..)



Li/CFx primary batteries operating 
Between -40 and 150 C

Sealing technology: metal-ceramics seals
(Matsushita’s patent)



CONCLUSION
Today’s LIB is not viable for extreme environments
R&D efforts should be undertaken to find highly 

stable chemistries including new anodes, cathodes 
and electrolytes. Some have already been explored
but not extensively enough
Due to wide temperature and pressure ranges, the 

new chemistries may make it necessary to 
compromise the energy density and/or cycle life.
Primary Li batteries are also an alternative, provided 
low temperature electrolytes are found.
Basic research is still needed to understand the 

electrochemically active and inactive materials 
behavior under extreme environments such as at
low and high temperatures and high pressure.


